CSCC69 Week 12 Notes

Lecture Notes:

- Distributed Systems:

- Adistributed system is cooperating processes in a computer network.

- ltis a group of computers working together as to appear as a single computer to the
end-user. These machines have a shared state, operate concurrently and can fail
independently without affecting the whole system’s uptime.

- E.g

mputer ®
Og pute compuler (O process
®

network link
— message

- Some popular distributed systems today include:
- Google file systems
BigTable
MapReduce
Hadoop
- ZooKeeper
- There are 3 degrees of integration for distributed systems:
1. Loosely-coupled: E.g. internet applications (email, web, FTP, SSH).
2. Mediumly-coupled: E.g. remote execution (RPC), remote file system (NFS).
3. Tightly-coupled distributed: E.g. file systems (AFS)
- Advantages of distributed systems:
Performance - parallelism across multiple nodes.
Scalability - by adding more nodes.
Reliability - leverage redundancy to provide fault tolerance.
Cost - cheaper and easier to build lots of simple computers.
Control - users can have complete control over some components.
Collaboration - much easier for users to collaborate through network resources.
- The promlse of distributed systems:
1. Higher availability - when one machine goes down, use another.
2. Better durability - store data in multiple locations.
3. More security - each piece is easy to secure.
- The reality of distributed systems:
1. Worse availability - depend on every machine being up.
2. Worse reliability - can lose data if any machine crashes.
3. Worse security - anyone in the world can break into the system.
Coordination is more difficult - must coordinate multiple copies of shared state
information (using only a network).

ook wh =

CSCC69 Week 12 Notes

- Requirements:

- Transparency: The ability of the system to mask its complexity behind a simple
interface.

- Possible transparencies:

- Location - cannot tell where resources are located.

- Migration - resources may move without the user knowing.

- Replication - cannot tell how many copies of resources exist.

- Concurrency - cannot tell how many users there are.

- Parallelism - may speed up large jobs by splitting them into smaller
pieces.

- Fault Tolerance - system may hide various things that go wrong.

- Transparency and collaboration require some way for different processors to
communicate with one another.

- Clients and Servers:

- The prevalent model for structuring distributed computation is the client/server
paradigm.

- A serveris a program or collection of programs)that provides a service.

- The server may exist on one or more nodes.

- Note: Often the node is called the server, too, which is confusing.

- Aclient is a program that uses the service.

- Aclient first binds to the server (locates it and establishes a connection to it).
Then, the client sends requests, with data, to perform actions, and the server
sends responses, also with data.

- Naming:

- Essential naming systems in network:

- Address processes/ports within the system (host, id) pair.

- Physical network address (Ethernet address).

- Network address (Internet IP address).

- Domain Name Service (DNS) provides resolution of canonical names to network
addresses.

- Communication:
- There are a few ways computers can communicate with each other:
1. Raw Message - UDP:
- Network programming = raw messaging (socket 1/O).
- Programmers hand-coded messages to send requests and responses.
- This method is too low-level and tiresome.
- Need to worry about message formats.
- Must wrap up information into a message at source.
- Must decide what to do with the message at the destination.
- Have to pack and unpack data from messages.
May need to sit and wait for multiple messages to arrive.
2. Rellable Message - TCP:
3. Remote Procedure Call (RPC) and Remote Method Invocation(RMI):
- Procedure calls are a more natural way to communicate.
- Every language supports them.
- Semantics are well-defined and understood.
- Natural for programmers to use.
- Theidea is to let servers export procedures that can be called by client
programs.
- Similar to module interfaces, class definitions, etc.

CSCC69 Week 12 Notes

Clients just do a procedure call as if they were directly linked with the
server.
Under the covers, the procedure call is converted into a message
exchange with the server.
Remote Procedure Call (RPC) is the most common means for remote
communication.
It is used both by operating systems and applications.
DCOM, CORBA, Java RMI, etc., are all basically just RPC. NFS is
implemented as a set of RPCs.
A server defines the server’s interface using an Interface Definition
Language (IDL) that specifies the names, parameters, and types for all
client-callable server procedures.
A stub compiler reads the IDL and produces two stub procedures for
each server procedure (client and server).
Server programmer implements the server procedures and links them
with server-side stubs.
Client programmer implements the client program and links it with
client-side stubs.
The stubs are the “glues” responsible for managing all details of the
remote communication between client and server. They send messages
to each other to make RPC happen transparently.
A client-side stub packs the message, sends it off, waits for the result,
unpacks the result and returns to the caller.
A server-side stub unpacks the message, calls the procedure, packs the
results, sends them off.
Marshalling is the packing of procedure parameters into a message
packet.
The RPC stubs call type-specific procedures to marshal or unmarshal the
parameters to a call.
The client stub marshals the parameters into a message.
The server stub unmarshals parameters from the message and uses
them to call the server procedure.
On return:

- The server stub marshals the return parameters.

- The client stub unmarshals return parameters and returns them to

the client program.

