
CSCC69 Week 12 Notes
1

Lecture Notes:
- Distributed Systems:
- A distributed system is cooperating processes in a computer network.
- It is a group of computers working together as to appear as a single computer to the

end-user. These machines have a shared state, operate concurrently and can fail
independently without affecting the whole system’s uptime.

- E.g.

- Some popular distributed systems today include:
- Google file systems
- BigTable
- MapReduce
- Hadoop
- ZooKeeper

- There are 3 degrees of integration for distributed systems:
1. Loosely-coupled: E.g. internet applications (email, web, FTP, SSH).
2. Mediumly-coupled: E.g. remote execution (RPC), remote file system (NFS).
3. Tightly-coupled distributed: E.g. file systems (AFS)

- Advantages of distributed systems:
1. Performance - parallelism across multiple nodes.
2. Scalability - by adding more nodes.
3. Reliability - leverage redundancy to provide fault tolerance.
4. Cost - cheaper and easier to build lots of simple computers.
5. Control - users can have complete control over some components.
6. Collaboration - much easier for users to collaborate through network resources.

- The promise of distributed systems:
1. Higher availability - when one machine goes down, use another.
2. Better durability - store data in multiple locations.
3. More security - each piece is easy to secure.

- The reality of distributed systems:
1. Worse availability - depend on every machine being up.
2. Worse reliability - can lose data if any machine crashes.
3. Worse security - anyone in the world can break into the system.

Coordination is more difficult - must coordinate multiple copies of shared state
information (using only a network).



CSCC69 Week 12 Notes
2

- Requirements:
- Transparency: The ability of the system to mask its complexity behind a simple

interface.
- Possible transparencies:

- Location - cannot tell where resources are located.
- Migration - resources may move without the user knowing.
- Replication - cannot tell how many copies of resources exist.
- Concurrency - cannot tell how many users there are.
- Parallelism - may speed up large jobs by splitting them into smaller

pieces.
- Fault Tolerance - system may hide various things that go wrong.

- Transparency and collaboration require some way for different processors to
communicate with one another.

- Clients and Servers:
- The prevalent model for structuring distributed computation is the client/server

paradigm.
- A server is a program or collection of programs)that provides a service.
- The server may exist on one or more nodes.
- Note: Often the node is called the server, too, which is confusing.
- A client is a program that uses the service.
- A client first binds to the server (locates it and establishes a connection to it).

Then, the client sends requests, with data, to perform actions, and the server
sends responses, also with data.

- Naming:
- Essential naming systems in network:
- Address processes/ports within the system (host, id) pair.
- Physical network address (Ethernet address).
- Network address (Internet IP address).
- Domain Name Service (DNS) provides resolution of canonical names to network

addresses.
- Communication:

- There are a few ways computers can communicate with each other:
1. Raw Message - UDP:

- Network programming = raw messaging (socket I/O).
- Programmers hand-coded messages to send requests and responses.
- This method is too low-level and tiresome.
- Need to worry about message formats.
- Must wrap up information into a message at source.
- Must decide what to do with the message at the destination.
- Have to pack and unpack data from messages.
- May need to sit and wait for multiple messages to arrive.

2. Reliable Message - TCP:
3. Remote Procedure Call (RPC) and Remote Method Invocation(RMI):

- Procedure calls are a more natural way to communicate.
- Every language supports them.
- Semantics are well-defined and understood.
- Natural for programmers to use.
- The idea is to let servers export procedures that can be called by client

programs.
- Similar to module interfaces, class definitions, etc.



CSCC69 Week 12 Notes
3

- Clients just do a procedure call as if they were directly linked with the
server.

- Under the covers, the procedure call is converted into a message
exchange with the server.

- Remote Procedure Call (RPC) is the most common means for remote
communication.

- It is used both by operating systems and applications.
- DCOM, CORBA, Java RMI, etc., are all basically just RPC. NFS is

implemented as a set of RPCs.
- A server defines the server’s interface using an Interface Definition

Language (IDL) that specifies the names, parameters, and types for all
client-callable server procedures.

- A stub compiler reads the IDL and produces two stub procedures for
each server procedure (client and server).

- Server programmer implements the server procedures and links them
with server-side stubs.

- Client programmer implements the client program and links it with
client-side stubs.

- The stubs are the “glues” responsible for managing all details of the
remote communication between client and server. They send messages
to each other to make RPC happen transparently.
A client-side stub packs the message, sends it off, waits for the result,
unpacks the result and returns to the caller.
A server-side stub unpacks the message, calls the procedure, packs the
results, sends them off.

- Marshalling is the packing of procedure parameters into a message
packet.

- The RPC stubs call type-specific procedures to marshal or unmarshal the
parameters to a call.
The client stub marshals the parameters into a message.
The server stub unmarshals parameters from the message and uses
them to call the server procedure.

- On return:
- The server stub marshals the return parameters.
- The client stub unmarshals return parameters and returns them to

the client program.


